On the Generative Power of Simple H Systems

Lakshminarayanan Subramanian
Muralidhar Talupur
Kamala Krithivasan

C. Pandu Rangan

Department of Computer Science and Engineering
Indian Institute of Technology, Madras
Chennai-600 036, India

Abstract

In this paper, we prove that the power of Simple H-systems of the
(2,3) type with permitting contexts and target alphabet is equal to
Extended H-systems with permitting contexts and radius of the rules
equal to one. We also prove interesting results on Simple Extended
H-systems and Extended H-systems with forbidden contexts.

Keywords: Splicing systems, simple H systems, permitting and for-
bidden contexts and cardinality of context.

1 Introduction

Tom Head [4] initiated a new appealing branch of formal language theory
called Splicing Systems. The basic notion is that of splicing, a formal model
of the recomb inant behavior of DNA sequences under the influence of re-
striction enzymes and lygases. A slight modification of this system was called
as H-system by Paun [5].

By adding the notion of terminal alphabet to a H-system, we obtain an
extended H-system [5, 9]. The power of such a system, with the set of splicing

rules forming a regular language, turns out to be very large; these systems
characterize the family of recursively enumerable languages [1, 7]. In this
paper, we concentrate on a specific extended H-system having the radius
one.

In [6], the notion of Simple H-systems was introduced. The possibility of
permitting contexts and target alphabet for Simple H-systems was studied
in [2] and many interesting results were obtained. In this paper, we study
SEH systems of the (2, 3) type.

In this paper we prove that the power of SEH system of the (2,3) type
with permitting contexts is equivalent to Extended H-system with radius
equal to one and permitting contexts. We also prove interesting results for
Simple Extended H-systems with forbidden contexts. This paper also defines
anew term called the cardinality of context in Extended H-systems. We prove
that cardinality of context adds no power to EH systems with permitting
contexts but plays a very important role in forbidden contexts.

In section 2, we give the basic definitions. Section 3 describes the role of
cardinality of context in Extended H-systems. In section 4, we prove that
SEH,3(p) is equal to EH(FIN,p[1]). In section 5, we prove an interesting
result on SEH system of (2,3) type with forbidden contexts. In section 6,
we present our conclusions.

2 Preliminaries

2.1 Extended H Systems

The splicing operation is a formal model of the DNA recombination under
the effect of restriction enzymes. A splicing rule (over an alphabet V) is a
string r = w;#HusSuszHuy where uy, us, usz, ug € V* and #,$ are two special
symbols not in V.

For z,y,z, w € V* and r as above we write (z,y) I, wiff z = xjujuszy, y =
Y1 U3ULY2, W = T1uiUsYe for some xq, 2o, y1,y2 € V™.

We say that we splice z,y at the sites ujus, uzus. These sites encode the
patterns recognized by restriction enzymes able to cut the DNA sequences
between wuq, uy, respectively between ug, uy. The radius of a splicing rule is
the length of the longest string wuy, ug, us, 4.

An extended H system is a quadruple v = (V,T, A, R) where V is the

total alphabet, 7" C V is the target alphabet, A C V* represents a finite set
of axioms and R C V*#V*$V*#V* is a set of splicing rules.
For any L C V* and v = (V,T, A, R) we define
o(L) ={w|(z,y) F, w for z,y € L,r € R}
o'(L) =1L

ot1(L) Ui(L) Uo(oi(L)),i>0

The language generated by -y is
L(y)=0c*(A)NT*

An Extended H-System with permitting contexts is a quadruple v =
(V,T, A, R) where V, T, A are the same as defined earlier and R is a finite set
of triples p = (r = wy#usSus#uy, C1, Cy) where C7,Cy C V and r is a usual
splicing rule.

In this case (z,y) b, w iff (z,y) F, w and all symbols of C appear in z
and all symbols of C5 occur in y.

An Extended H-System with forbidden contexts is a quadruple v =
(V,T, A, R) where V, T, A are the same as defined earlier and R is a finite set
of triples p = (r = wy#usSus#uy, C1, Cy) where C7,Cy C V and r is a usual
splicing rule.

In this case (z,y) F, wiff (x,y) F, w and all symbols of C; do not appear
in z and all symbols of Cs do not occur in y.

EH(FIN,plk]) refers to the family of languages generated by Extend-
ed H-Systems with permitting contexts, finite set of axioms and rules with
maximum radius equal to £ for £ > 1. In a similar fashion, one can define
EH(FIN, f[k]) to be the family of languages generated by Extended H sys-
tems with forbidden contexts, finite set of axioms and rules with maximum
radius equal to k.

Let us define a new term cardinality of context to be the maximum size
of a context in a rule in the Extended H system. An Extended H-system -y
is said to have a cardinality of context equal to n if every rule r = (p, Cy, Cs)
satisfies the constraint |C;| < n and |C3] < n and n is the smallest integer
with this property.

Let EH(FIN,plk,n]) define the family of languages generated by Ex-
tended H systems with permitting contexts, finite set of axioms and rules
with maximum radius equal to £ and maximum cardinality of context equal

to n. Similarly one can define EH(FIN, f[k,n]) for forbidden contexts.

In this paper we will investigate the properties of these languages and
associate them with Simple H-Systems. We will prove that the cardinality
of context plays no role in permitting contexts but has an important role in
forbidden contexts.

2.2 Simple H Systems

A Simple H-System is a triple v = (V, A, M) where V is the total alphabet, A
is a finite language over V and M C V. The elements of A are called axioms
and those of M are called markers. In [6] where Simple H-Systems were in-
troduced, one takes four ternary relations on the language V* | corresponding
to splicing rules of the form

aFtSa#, #aS#a, a#$S#a, #aSa#
where a is an arbitrary element of M. The rules listed above correspond
to splicing rules of type (1,3),(2,4),(1,4) and (2,3) respectively. Clearly
rules of types (1,3) and (2, 4) define the same operation for x,y, z € V* and
a € M. We obtain

(z,y) l_?1,3)or(2,4) 2iff ¥ = xyaxy, y = y1ays, 2 = 1103y, for some x1, To, Yy, Yo €
V*
For the (1,4) and the (2, 3) types we have

(x,y) Ftay 2 ff 2 = 21029,y = yrays, 2 = x1aay; for some 1, 2, Y1, Y2 €
v
(z,y) l_??:?)) 2 iff v = xyaxy, y = yrays, z = x11, for some 11, 1o, y1,ys € V*
Similar to Extended H-systems we define for a language L C V* and (i, j) €
{(1,3),(2,4),(1,4), (2,3)}. We denote

o (L) ={zlz € V*, (z,y) F{;; # for z,y € L,a € M}
Define
ofy(L) =1

(i-9)
Gy (L) = ;. (L) U iy (af; (L)), k> 0
)

Q

(ij (L) = Ukzﬂa&j)([/)
The language generated by v with splicing rules of type (7,) is defined as
Liij(7) = of; 5(A)

Q

One can visualize an extension to Simple H-Systems with permitting con-
texts and terminal alphabet. A Simple H-System with terminal alphabet is

one in which a set T" C V is identified as the target alphabet and only ele-
ments of T which are present in L(7y) are accepted by the language. This is
called Simple Extended H System(SEH System). A Simple H-System with
permitting context has rules of the form (a,b,c) with a,b,c € V. Such a
triple represents a splicing rule using the marker a, which is applied to two
strings x,y € V* only if the symbol b appears in x and ¢ in y.

Similar to permitting context, one can have forbidden context for Simple
H systems. A triple (a,b,c) represents a splicing rule using the marker a,
which can be applied to two strings z,y € V* if and only if b does not appear
in x and ¢ does not appear in y.

In this paper we only consider rules of the (2,3) type into consideration.
Formally we define a Simple H-System of (2,3) type with permitting context
and target alphabet as a quadruple v = (V,T, A, R) where V is the total
alphabet, T' is the target alphabet, A is a finite set of axioms and R is a set
of splicing rules of the form (a, b, c). For x,y € V*,r = (a,b,c¢) € R

(x,y) by z iff £ = 21029,y = Y10y, 2 = x1Yys for some xq, 29,41, y2 € V*
and b appears in z and ¢ appears in y.

All languages derivable using this mode of derivation with permitting
context and target alphabet belong to the SEH(; 3)(p) family. All languages
derivable using the (2,3) mode of derivation with forbidden context and
target alphabet belong to the SEH ;4 (f) family.

3 The Role of Context in Extended H Sys-
tems

In this paper we prove that the power of SEH3)(p) is the same as that of
EH(FIN,p[l]). There are two features of Simple H-Systems which makes
them by definition look like a very special subclass of Extended H System-
s. One important feature is that of the structure of the splicing rules in
the Simple H-Systems. Another important feature that makes Extended H-
systems look very powerful is the presence of permitting contexts of arbitrary
sizes. In SEH systems the size of the permitting context is restricted to one.
Formally, a rule r in a Extended H System is of the form (p; Cy,Cy) where
C1, C5 can be arbitrary subsets of the alphabet V' but the same rule is valid
in Simple H-Systems iff |C| < 1, |Cy| < 1.

In this section we show that the power of Extended H-Systems is not
enhanced by the presence of permitting contexts of arbitrary sizes. For any
arbitrary Extended H-System ~, we present an equivalent EH system 7' in
which each rule has its permitting context reduced to size one. We also show
that for every language L in Extended H-system with forbidden context
having a cardinality of context greater than one there is a corresponding
marker language L$ in EH systems with cardinality of forbidden context
equal to 2.

A splicing system is said to satisfy the property O iff every rule r € R is
of the form (p, C;, Cy) where p = (uj#us$us#uy4) is a splicing rule of radius
one and |Cy] = 1,|Cy| = 1. A splicing system satisfying property © has a
cardinality of context equal to 1.

Theorem 1: For every splicing system v = (V,T, A, R) € EH(FIN,p[1])
there exists an equivalent splicing system ' = (V' T, A", R') € EH(FIN, p|[1])
such that +' satisfies property © and L(v) = L(%').

Proof:

Let v = (V,T,A,R) be a EH(FIN,p[l]) system. An equivalent +', in
which each context is of cardinality one, is constructed below. First construct
the following sets:

Ve = {7, 0. | C CV, C # 0}

V; ={N, |a eV}

AL = {0¢,0cy, 0cy0c, | C1# 0, Cy, CoCV, Cy= CiU{a} for some a€V}
Ao = {7ele, 0c7e | C CV, C # 0}

Ay = {vxv. | x €A, all elements in C appear in x}

Ae = {D7e, 7D | C CV, C # 0}

Re = { (06, #0c,80c,#, Ocyy @), (# 66,80¢,#0c,. , Oc,) | Co= C1U{a} for
a€eV}

Ra :{ ((sc #70$70#a (sca Na)a(#F}/C$/YC# 6caNa) 50)‘ C gv s aEV}
Ay ={B~v., 7B | C CV}
Rf - { (B#%$ 76#; B Ve)) (#7P$7P#B s Vel s B) ‘ Ca ' gv }
A, ={Bd, sB|C CV}

Ry = { (0o} #BSB#, 0(}, a), (#BSB#0(a}, a, 0(a}) |a €V }
Ry = { (D#7e$v#, D, 7o), (# 7$7#D, 7, D) | C,C" CV }
Ai = {D, 7.M, M.}

R7 = {(#D$D#J MJ (Z])J (#D$D#7 @; M)J (#’Yc$%#; DJ Q))J (# f)/(z$f)/(3#7
0, D), (#MSM#,0,0) | C CV}

Ry = { (a#NySN#d |, 7oy, Ve,) | there exists a rule (a#b$c#d, Cy, Cs)
inR }

Note that we are considering only the rules of the form (a#bS$c#d, Cy,
Cy). There is no loss of generality in this for, any rule in which one or more
of ’a’, ’b’, '¢’, or ’d’ are missing is equivalent to a set of rules in which each
missing position is replaced, successively, by all letters of V.

A;={aN,, Nsa|a€eV}

R; = { (#a%a#N,, d., N,), (No#aSa#. Ny, 6.) [C CV, a eV}
V' =V U{B,D, M} UV, UV,

R'=R, UR, UR; UR, UR, UR; UR; UR,

A’ = A, UA, UA; UA, UA; UA, UA; UA,

And ~' = (V' T, A", R').

The above splicing system works as follows. The rules and axioms indexed
'i” and ’h’ are for removing elements not belonging to V from strings of the
form 7., av.,to produce the required strings.

The whole mechanism is centered around strings of the form 7., a.,.Once
such a string is produced rules and axioms in the sets indexed from ’a’ to
‘g’ do the following. First a B is appended to one of the ends of the above
string (sets with index ’f” do this). Then the context present in the string «,
that is the set of all the distinct letters of V present in «, will be captured
in a letter of the form §, where C is the set mentioned above. The rules that
do this are R, , R,.The string o will have letters belonging only to V as will
be clear from the description given below. After this the string (which will
now be of the form §., ay., or y.,ad.,) will be made ready to take part in
another splicing .The rules of R; cut the string at some a € V and so one
end of the string wil be bound by N, and on the other end the d.,is replaced
by v.,. So the string will now be of the form 7., a’N, or Nya’v,.,. This string

can now enter splicings with other strings of the same form according to the
rules of R, which simulate the rules of R.

The whole process is shown below. Suppose we start with the strings
Yer Ve, a0 Ve, 57e,. Then the following splicings will occur

BYe,s Yer@e,) F Bary,, (using a rule from Ry)

0} B , Bave,) F dgayaye, (using a rule from Ry)

(

(

(0600 5 0er Yey) F Oe Ye, (using a rule from R,)

(d.a'abny., , bNy) F 0, o/aN, (using a rule from R;)
(

Yele 5 0 @’N,)F v.0’aN, ((using a rule from R,)
Similarly 7.,37., derives N.d3 vy,

These two strings will combine according to a rule (a # Ny § N, # d | 7.,

Ye) to produce v.o'5'yu
From this string o/’ will be produced as follows.

(D7, , e f've) F D/ 'y (using a rule from Ry,)
(Da/B'ye , 7eM) F Do/ M (using a rule from R;)
(D ,Da/' M) F o' M (using a rule from R;)
(' M, M) F of (using a rule from R;)

We now prove that v is equivalent to +'.

Claim 1: If o produces a string z then it must be produced by ~.

Proof : For strings derived in four steps in 7' the claim is true from the the
fact that v.x7. is an axiom of v if x is an axiom of v and only such strings
can be produced in three steps(three is the minimum number of steps
required to produce a string from V* in 4'). Assume that the assertion is
true for strings which are derived in less than k steps where k is the number
of steps taken to derive z in 4'. Now z must have been produced from a
string of the form ~,, z7y.,.This in turn must have been produced from
strings of the form 7., u’aN, and N.dv"y,.,. These must have been produced
from strings 7., uy., and 7., vy.,for some C3 and C, as can be seen from the
example shown above.By induction hypothesis u and v will be produced in

v (note that from the construction of the system u and v will be produced
in 7' and they will be produced in less than k steps.The number of steps
taken to capture the context and prepare the string for splicing take at
least as many steps as it takes to remove the symbols 7., which is four).
Also since the strings 7., vaN, and N.dvy,., are produced from ., u7y., and
Yes Ve, veSpectively and the former pair of strings combine according to the
rule (a # Ny $ N. # d ,7.,,7,) where Cjand C, capture the context in u
and v respectively ,there must be rule (a # b $ ¢ # d, C;, Cy) in R
according to which » and v can combine to produce u’v”.Hence the proof.

Claim 2: If a string z is produced in « then it will be produced in ~'

Proof: We can again use the same approach. The assertion is true for
strings derived in one step in 7 (the axioms) by the construction of ' .
Suppose the assertion is true for strings which are derived in less than k
steps. Let z = wadv be derived from strings of the form wab/ and dcdv by
the rule (a # b $ ¢ # , C, C’). By induction hypothesis uabf and §edv
must have been produced in 4. So by construction of S the strings v.uaN,
and N.dvy. will also be produced in 7'.And the rule (a # N, $ N. # d
erYer) Will be in R’ .So the string . uvys will be produced. From this
string uv will be produced by the rules from R, and R;. Hence the proof.

So from the above two claims it can be seen that the 7' produces those
strings and only those strings that are produced by 7. Hence cardinality of
context does not affect the power of the Extended H system with permiting
contexts and rules of radius one.

Therefore L(vy) = L(v').0

Note that the same proofis applicable to radius of arbitrary sizes. One can
apply the same proof to show that EFH(FIN, p[k]) = EH(FIN,p[k,1]). This
clearly indicate that the cardinality of context adds no power to Extended
H-systems with permitting context.

Theorem 2: For every language L € EH(FIN, f[k]) there exists a
language L' € EH(FIN, f[k,2]) such that L' = L£ for a character £ not
present in the alphabet of L.

Proof: Consider a splicing system v = (V,T, A, R) in EH(FIN {[k]) for
some n. For every rule r € R we introduce two new symbols 3., 8. Let

R = {Tl,TQ,...Tn}.
Let Y = By, Bry ... Br, and let Yo, = By Bry -+ Bro s Bross - - - oo
Let V' = 57"’167"'2 .. -Br; and let Yr’i = 57"’167"'2 .. .Brgqﬁ,«;“ .. -Br’n-

Let Vo = VU{p} for some p ¢ V. Transform every rule r = (¢,C, D) € R
where C' = ¢ or D = ¢ to rules of the form r = (¢, C’, D') where C' = {p} if
C = ¢ else it is equal to C and D' = {p} if D = ¢ else it is equal to D.

This transformation has no effect on L(y) since we have introduced a
forbidden context on a character not present in V. The proof presented
below requires that every rule has non-empty forbidden context. The above
transformation does not increase the cardinality of context of ~.

Construct v = (V',T', A", R") € EH(FIN, f[k,2]) as follows:
T"=TuU{t}

Ve =A{1clC # ¢,C CVy}
V; = {Braﬁr’hﬂ € R}
VI=VWuV,uWV,U{Z X, X" 2!, 7" X", £}
A ={Y'ZwuXY,Y'XwZY|w e A} U{ZZ", Z"£, Z'Y, Z'ZY , Y'ZX" V' X', X"}
A ={rx Y, Y'yyx| X, W CV, X # ¢, W = X U {a} for some a € V'}
Ao = {VC naY; /YD‘Ti = (pa C, D) S R}
A’:ASUACUA,ZUAE
R, = {(#7X$7X#7 a, Z)> (#7X$7X#> Z, a)|X V- {a}}
R = {(Z#5 2450, 0, X), (yo# 2842, X a)|a € V,C = {a}}
R = {(’{/BT‘i’ "€}a {57";’ f})‘rz = (p, CaD) S R}
{(Z#’YC$VC#a ¢a {Bra X})’ (#7D$’7D#Za {5r’a X}a ¢) |T = (pa Ca D) S

nyJliegliay)
—_ O

{(HXSHZ', By, Brr), (XHSX#, B,, B,)|r € R}
{H#Z8Z#42", 6, 0), (#Z"SZ"# L AX, 2}, ¢), (X#$#X" { £, 7}, ¢)}
(#2874 72,42, X'}, X), (Z#X'$X'#, X, {Z, Z'V)|r € R}

R R,UR;UR.UR; UR, UR, UR,

The cardinality of context of 4" is 2 and the radius of 7' is equal to the ra-
dius of . Therefore one can clearly see that o' belongs to EH(FIN, f[k,2]).
We will now prove that the language generated by 7/ is in fact equal to the
language generated by v appended with a constant letter £.

A string z is said to satisfy the forbidden context C' C Vj if all the
characters of C' are not present in x.

10

The splicing system +/ satisfies the following property:

Any string w € V* derivable in any intermediary step of 7' and of the form
Y'XyZ~cY or Y'voZyXY is such that y is an intermediary string derivable
in v and y satisfies the forbidden context C'.

The rules in R, are used to simulate the rules R of . The rules in R., Ry
are used to generate all the possible forbidden contexts for a single string
x € V*. Every string x is initially appended with the strings ZY and XY’ in
order to generate all the possible contexts for the string. For a given string
Y'XxZY, v produces all strings of the form Y'XzZ~vcY where x satisfies
the forbidden context C'. Similarly, for a given string Y'Zx XY, v produces
all strings of the form Y'voZx XY where x satisfies the forbidden context C'.

Suppose C' C V and z satisfies the forbidden context C, then we produce
the string Y'XxzZ~cY from Y'XxZY as follows:

Assume Y'X2ZY is derivable in

Y'XaZY, Z~,,Y) F Y'XxZ~,Y for some a; € C using the corresponding
rule in Ry.

Let us prove by induction on the size of the context C' that Y'XxZ~sY is
derivable.

Let C" be a subset of C such that C' = C' — {a;} for some j

By induction hypothesis Y/ Xz Z~vcY is derivable.

Y'XxZvyo Y, veveY) B Y' X2 ZyeY using the corresponding rule in R,

Therefore Y' XxZ~cY is derivable iff x satisfies the forbidden context C.
Similarly we can show that Y'yoZz XY is also derivable in ~'.

So for every string Y'XwZY in 4" all strings of the Y/'XwZv:Y and
Y'veZwXY are derivable iff w satisfies the forbidden context C'.

~" satisfies another important property:

Every string u € V'"* derivable in 7' and which does not contain the character
B, for some r = (p,C, D) € R satisfies the forbidden context C' and every
string that does not contain the character (3, satisfies the forbidden context
D.

Note that the only strings w£ € V*£ derivable in 4" are derivable only
from Y'XwZY. For every w € V* derivable in v, Y'XwZY,Y'ZwXY are
derivable in +'.

We will show the above result using induction on the number of splicing
steps required to produce a string w € V* in 7.

Since {Y'XzZY,Y'ZxXY|x € A} C A, the basis step of induction is

11

true.

Assume that for all strings = derivable in at most k splicing steps in v,
Y'XxZY,Y'ZxXY are derivable in v'. Let w € V* be derivable in v in
k + 1 steps. Let w be derived from strings u,v € V* using rule r; € R.
By induction hypothesis Y'XuZY,Y'Zv XY are derivable in 4. Let r; =
(p,C1,Cy) € R . Since (u,v) b, w, u satisfies the forbidden context Cy
and v satisfies the forbidden context (5. Therefore the strings V' XuZvq, Y
and Y'yc, ZvXY are also derivable. Using rules of R, we can also derive
Y ZvXY and Y'XuZY,,. Using these strings and the rules of Ry one can
derive Y Zv XYY, ZvZ'Y,Y'XuZY,, and Y'X'uZY, .

Using the rules of R one can derive Y/'XwZY,Y'ZwXY in the following
way:

Using the rule (p, {f,,, £}, {5,., £}) in R, the strings Y'XuZY,,Y'X'uZY,,
can splice with the strings Y, Zv XY, Y ZvZ'Y to produce the strings Y’ Xw XY,
Y'XwZ'Y,)Y'X'wXY and Y'X'wZ'Y. Among the four strings produced the
strings Y/'XwXY and Y'X'wZ'Y are rendered inactive since they cannot
splice anymore. Using the rules of R, the string Y’ XwZY and Y'ZwXY are
derivable from the strings Y/ XwZ'Y and Y'X'wXY respectively.

Therefore one can obtain Y/ XwZY and Y'ZwXY in +'. From Y'XwZY
we obtain w.£ using the splicing rules listed below.

Y'XwZY,ZZ") = Y'XwZ" using rule (#Z$Z#7", ¢, ¢)
Y'XwZ", X") b wZ" using rule (X#$S#X" {7, £}, 9)
(wZ", Z"£) b wt using rule (#2"$7"#L£,{X, 7}, d)

From this we can note that for every string w derivable in v, w£ is
derivable in +'.

Now we will prove that for every string w£ € V*£ derivable in ', w is
precisely derivable in . In 7' the strings w£ € V*£ are derivable only from
strings of the form Y'XwZY .

Let us prove the above step using induction on the number of splicing
steps required to produce a string w£ in v, If YXwZY € A’ then w € A
and w£ is derivable in 7. Therefore the basis step of induction is true.
A string of the form Y’ XwZY can be derived in ' only from a string of
the form Y'XwZ'Y which in turn can be produced only from two strings
of the form Y'XuZY,,Y,ZvXY for some r = (p,C,D) € R. The strings
Y'XuZY,, Y ZvXY are derivable only from Y'XuZ~vcY and Y'ypZvXY.
From this one can infer that the strings Y/ XuZY and Y'XvZY are derivable

12

in 7' and that u, v satisfy the forbidden context C, D respectively.

By induction hypothesis we get that u, v are derivable in 7. In v one can
have the following splicing action:
(u,v) B w
Therefore w is derivable in ~.

By induction one can conclude that for every w£ € V*£ derivable in +/,
w is precisely derivable in ~.

Therefore L(v') = L(v)£.

From the above two theorems one can infer that the cardinality of permit-
ting context does not add power to Extended H-Systems but the cardinality
of forbidden context seems to play an important role in Extended H-Systems.

4 Equivalence of SEH,3(p) and EH(FIN,p[l])

In the previous section, we proved that the power of Extended H-Systems is
not enhanced by the presence of permitting contexts of arbitrary sizes. In
this section we derive the equivalence of SEH, 3(p) with Extended H-Systems
with cardinality of context restricted to one. For any arbitrary Extended H-
System v in which each rule has its permitting context reduced to size one,
we present an equivalent SEH system +' with rules of type (2,3) having
permitting context and terminal alphabet.

4.1 Notations

Let v = (V,T, A, R) be an extended H system of radius 1 with permitting
context having a cardinality of context equal to 1. We introduce new symbols
of the form X, for all a,b € V' U {e} with the exception of X .

Let V, = {Xupla, 0 € VU {e}} — { X}
Vo=VuY,
A string w € V' is said to be valid iff

1. Two symbols of V, do not occur adjacent to each other.

2. if X, is present in w then the left adjacent symbol of X, has to be a
and b its right adjacent symbol.

13

3. The first character ¢ of w must be either an element of V' or should be
of the form X, , for some a € V.

4. The last character d of w must be either an element of V' or should be
of the form X, for some a € V.

The boolean function valid assumes the value true for a string w if it is
valid, else it takes the value false.

Define a function g : V¥ — V*. For every u € V", g(u) is obtained by
substituting e for all characters of V, present in u. From the definition one
can infer that g(w) = w iff w € V*.

Define a function f : V* — P(V}"). The function f is defined as the valid
preimage of a word w € V* under the function g. Note that P(X) denotes
the power set of the set X.

Mathematically, we obtain

f(w) = {ulu € V§,valid(u), g(u) = w}

The function f can be extended to all languages L C V'*:
f(L) - UwELf(w)

It is not difficult to see that
Lemma 1: For every finite language L, f(L) is finite.

A splicing system is said to satisfy property « if and only if the following
conditions are satisfied:

For every rule r = (a#b$c#d, Cy,Cy) where some of the alphabets a, b, ¢, d
are €, there exists rules of the form (e# f$g#h, Cy, Cy) such that the symbols
corresponding to the e— alphabets in rule r assume all possible characters in
V U {e}.

It is straightforward to note that
Lemma 2: Given a splicing system v = (V, T, A, R) one can transform v to
v = (V,T, A, R') such that ' satisfies property o and L(vy) = L(v').

Theorem 3: SEH,;(p) = EH(FIN,p[l]).

Proof: Consider an extended H-system v = (V,T, A, R) that satisfies
properties a and ©. We will form a simple H system ~' of the (2,3) type
with permitting context and target alphabet which generates L(7).

14

Let V., Vi, f and g be as defined earlier. o' = (V' T, A’, R") where :
VI =VoU{v|r e R} U{M}
Al = f(A)U{MXa,bPYTMla M,PYrXa,ch,dMa M,F}/TXC,dM‘T = ((I#b$()#(], C]) 02) €
R}
R' = {(Xa,ba C]a {P}/T})a (Xc,da {/77‘}’ CQ)a (77‘7 {(L}, {d})"l" = ((L#b$c#d, C]) CQ) €
R}

Since A is a finite language over V' we can directly infer that f(A) is also
finite.

A string w € V* is said to be y— derivable, if w can be derived from
the set of rules and axioms in a sequence of splicing steps. Note that w can
be any intermediary string derived in v and need not be present in 7*. We
extend the same definition to 7' over the set Vj.

We will show that for every w that is y— derivable, all strings of f(w)
are derivable in 7. We will also show that for every string v € V; derivable
in 7/, g(v) is derivable in . We will prove this assertion using induction.

The induction will be on the number of splicing steps required to produce
a string w € V*. Since f(A) C A’, for all strings w € V* which are y—
derivable in zero steps, f(w) is 4" derivable.

Assume that for all strings w € V* which are y—derivable in atmost k
steps, f(w) is v'— derivable. Consider a string w € V* which is derived in
k + 1 splicing steps. Let » € R be the final rule applied to obtain w from
strings u, v.

If r = (a#b$c#d, Cy, Cy) then u = ujabuy, v = vicdvy and w = uyadv,
for some strings uy, ug, v, v9 € V*,

Let P(w) denote those sets of strings in f(w) which do not end in a
symbol of the form X, . and Q(w) denote those set of strings in f(w) that
do not start with a symbol of the form X, for some a,b € V.

By induction hypothesis since u,v are y— derivable in atmost k& splicing
steps in +, all strings in f(u) and f(v) are 4/ —derivable.

If s = syabsy € V* then :

f(s) = {wiwq, w1 X, pwe|wy € P(s1a), wy € Q(bsy),a,b e V}

Therefore any string of f(w) is of the form wjwy or wi X, wy where
wy; € P(uja) and wy € Q(dve). Consider an arbitrary wy, € P(uja) and
an arbitrary we € Q(dvy). We will show that both wjw, and wi X, qw,
are derivable in 7/ for this arbitrary choice of w; and wy. Since f(u) and

15

f(v) are v'—derivable there exists two strings u' € f(u),v' € f(v) such that

u' = w X, puh and v' = v] X, qwy for some ufy € Q(buy) and v] € P(cvy).
Now w is derived in v from u, v using rule r € R.
To derive wywy and wy X, qws in 7" we splice in the following way:

(wy Xgpuhy, M Xy, M') = wyy, M using (Xop, Cr, {7 })

(M, X aXeaM, v| X, qws) = M'y, X, qwy using (X4, {7 M'}, Cs)

(M’f)/r de UlX(’ dw?) =M Yrwo uSing (Xr’ d> {VTM} CQ)

(w1, M, My, X, qws) F wy X, gqwy using (v, {a}, {d})

(w7, M’ M'y,w3) F wywsy using (v, {a}, {d})

Therefore wyws and wy X, gw, are ' —derivable for every wy, € P(uja), wq €
Q(bvg). Therefore f(w) is v'— derivable for every w that is y— derivable.

The splicing system 7/ satisfies the following property:

Every string w = wywy € V{ is derived from two strings of the form w;~y,
and ~,wy where wy,wy € V",

We will prove by induction that for every w € V' that is derivable in ',
g(w) is y— derivable. We again apply induction on the number of splicing
steps needed to derive w.

Note that A’ N Vy = f(A) and g(f(A)) = A. Thereby for all strings
w € Vi which are derivable in zero steps, g(w) is v derivable.

Assume that for all strings w € Vj which are 7'—derivable in atmost &
steps, g(w) is y— derivable. Consider a string w € V7" derived in k + 1 steps.
w = wiwy or w1 X, wy derived from strings of the form u; = wivy,,uy =
Yrws, Uz = ¥, Xqqwy where wy,wy € Vi and r = (a#bSc#d,Cy,Cy) € R.
Note that uq, u9,us are derived from vy, v, where v = wy X, 0] and vy =
vy X qwq for vy, vy € V§.

(w1 Xopvy, MXapv,) Fwiy,
(1 XeaM, v5 X qws) F ypws
(Y XaaXeaM, v5X, qwa) = v, Xg aws

vy and vy are 7' —derivable in atmost k steps. By induction hypothesis
we get that g(v1) and g(vq) are y—derivable.

Let g(v1) = s1 and g(vs) = s2.
$1.= g(wn)g(v1), 55 = g(vh)g(ws)
Since vy is a valid string, w; must end with a and v} must start with b.
Therefore the site ab is present in g(v;). Similarly the site ¢d must be present

in .G(UQ)-

16

Since w7, is derivable from vy, v, satisfies the permitting context (.
Similarly we can prove that v, satisfies context C5. Since C,Cy C V we
have that g(vy), g(vq) satisfy contexts C, Cy respectively.

s1 = x1abxg, So = Yicdys
r = (a#b$c#d, Cq,Cy) and s; satisfies C; ands, satisfies Cy

(s1,82) Fr s where s = zadys

Since s1, 59 are y— derivable s is y— derivable. w = wywy or wy X, qwye =
g(w) = g(wr)g(wy) = s

Therefore g(w) is y—derivable.

By induction we thereby infer that for all w € V| which is v—' derivable
g(w) is y—derivable.

We have shown that for every w that is v—derivable, f(w) is v—' deriv-
able. Since f(w)NV* ={w} , wisy'— derivable. (1) Similarly for every w €
Vi that is 7/ —derivable, g(w) is y—derivable. For every w € V*g(w) = w.(2)

From (1) we infer that all the strings that are derived in v are derivable
in 7. From (2) we infer that the only strings of V* that are derivable in ~'
are precisely the strings that are derivable in ~.

Therefore one can infer that the set of terminal strings derived by both
these languages are the same.

Therefore L(y) = L(v').

The power of EH(FIN,p[l]) is not reduced by adding properties o and
O to the splicing system. This can be seen from the lemmas proved before.

For any arbitrary v € EH(FIN,p[l]) we can generate a language ' €
SEH,3(p) such that the languages generated are the same.

Therefore EH(FIN,p[1]) C SEH3(p).

By definition all splicing systems v € SEH, 3(p) belong to EH(FIN, p[1]).

SEH,3(p) € EH(FIN,p[1]).

Hence it follows that EH(FIN,p[l]) = SEH,3(p).

17

5 Simple Extended H-Systems of (2,3) Type
with Forbidden Contexts

In this section we prove an interesting result on Simple Extended H-Systems
of the (2,3) type with forbidden context and terminal alphabet. As defined
earlier, we will refer to the languages in this class as SEH,3(f). We will

show that the two classes of languages SEH, 3(f) and EH(FIN, f[1,1]) are
equal.

5.1 Notations

We introduce two new symbols of the form X,;, X/, for all a,b € V U {e}
with the exception of X, X/ .
Let V, = {Xup, Xopla, b€ VU {e}} — { X, X[}

Vo=V UV,

A string w € V| is said to be valid iff

1. Two symbols of V, do not occur adjacent to each other.

2. If X, or X'a,bis present in w then the site where X, or Xé,b occurs
in w should be of the form aX, ;X ,b.

3. The leftmost substring ¢ of w must either begin with an element of V/
or should be of the form X, X/ ,a for some a € V.

4. The rightmost substring d of w must be either an element of V' or
should be of the form a X, X, for some a € V.

The boolean function valid assumes the value true for a string w if it is
valid, else it takes the value false.

We define two functions f, g in a similar fashion to the one defined in the
earlier section.

Lemma 3: For every finite language L, f(L) is finite.

Proof: The proof is similar to the proof for Lemma 1.

Lemma 4: Every splicing system v € FH(FIN, f[1,1]) can be trans-
formed to an equivalent splicing system ~' € EH(FIN, f[1,1]) satisfying
property ©.

18

Proof: Let v = (V,T,A,R) € EH(FIN, f[1,1]). Construct a splicing
system ' = (V', T, A, R') as follows:
Let p be an alphabet not in V. V' =V U {p}
Let ¢ : V U {e} — V' such that ¢(v) = v if v € V and ¢(e) = p.

R = {(q,9(C),p(D)|r = (¢,C, D) € R}

Clearly +/' satisfies property © and the presence of the alphabet p in the
forbidden context of a rule does not change the set of derivable strings in the
splicing system ~'.

Note that Lemma 2 is independent of the type of context i.e forbidden
or permitting. Therefore for a given splicing system in EH(FIN, f[1,1])
one can construct an equivalent splicing system in the same class satisfying
properties a and ©.

Theorem 4: SEH,3(f) = EH(FIN, f[1,1]).

Proof: Consider a splicing system v = (V,T, A, R) in the extended H
system that satisfies properties a and ©. We will form a simple H system ~/
with forbidden context and target alphabet which generates L(7).

Let V, = {Xap, Xopla, b€ VU {e}} — { X, X[}

Enumerate the rules of the set R as ry,7s,...7,. Introduce n new symbols
b1, Ba, . .. Bn corresponding to each rule in R. Let V., = {fy, (2, ... 5, } and let
Y denote the string 3,3, ... B,. Let Y;, denote the string 3, ... 3,,_ .., ... Br,.
Vi={Bnlr € R}

V=Vuvy,

Let f, g be the same functions as defined before.
v = (V',T, A", R") where :
V=V,uV,uvu{mM}
Aa = {MﬁrXa,bﬁ;anra }/T'B;X(’;,dBTMa Y;B;«Xa,dX(’LvdX(’;vdﬁrM
|r = (a#bSc#d, Cy,Cy) € R,a # ¢}
Ab - {BTMXa,bXa,dﬁ;a BLXédeéydMﬁra MXa,bﬁyra PyTX(’lydM
|T - (a#b$a#d7 Cl; CQ) € R}
A= f(A)U A, U A,
Ra = {(Xa,b’ C]) X(II.,b)’ (Xé,d’ Xc,da CQ)a (ﬁ:ﬂa Bra Br)
|r = (a#b$c#d, Ch,Cy) € R and a # ¢}
Rb - {(Xa,ba Cl) X(’],,b)’ (X(’J,’da Xa,da CQ)a (57113 Bra Br)a (77" M? M)
|T - (a#b$a#d7 Cl; CQ) € R}

19

R =R,UR,

Since A is a finite language over V' we can directly infer that f(A) is also
finite.

Now we will show how 7' simulates a particular rule r € R of v. Let
r = (a#b$c#d, e, f) and let two strings u, v splice using rule r and produce
w.

We can infer that u = x,abxy and satisfies the forbidden context e and
v = yicdy, and satisfies the forbidden context f.

Since u, v are derivable in v and by induction on the number of splicing
steps required to produce a string in 7, we have that f(u) and f(v) to be
derivable in +'.

Consider two strings u' € f(u) and v' € f(v) such that v’ = 210X, X, ,bzo
and v = wycX g X{ jdw,.

Case 1: (a # ¢)

(o, Mﬁ,« abBYr) F z108,Y, using the rule (X, e, X/ ;)

(Yo B, X[4B M, ") = Y, Bl dw, using the rule (X ;, Xc4, f)

(YoBy XaaX) g X0 aBe M, 0") =Y, X, g X}, 4B dwy using the rule (X[5, X, 4, f)
(z105)Y,, Yﬁ d'll)g) - Z](Id’ll)g using the rule (BL, By, Br)

(210B8,Y;, Y, X0.a X[, 4B, dwa) = 210X, ¢ X ,dw, using the rule (5;, 5, ;)

Case 2: a =c
(u', By M Xy X0,4B3)) F 210 X048, using the rule (X,4, e, X7)
(u', M Xopyr) F 210, using the rule (X, e, X7 ;)
(BLX dX:z aMBe, ") B BX] 4dwy using the rule (X7 4, Xe g, f)
(7 X§ oM, ") = vpdw; using the rule (X[4, Xeg, f)
(zlaXa dﬁ B X, gdwsa) = 210X 44X 4dwsy using the rule (B;, 5, ()
(z1a7y, Yrdws) = zlade using the rule (v, M, M)

In both cases we can produce the strings zjadws and 2z a,Xade;’ddwg
which belong to f(w).

In a similar fashion all the elements of f(w) can be obtained by choosing
the corresponding elements u', v' from f(u), f(v).

Therefore w is the only element of V* obtainable in 4" using the simulation
of the rule r € R, since w € f(w) and f(w) N V* = {w}.

The rest of the proof is very similar to the proof method for Theorem 3.

20

6 Conclusion

In this paper we have proved that the power of simple H systems of the
(2,3) type is equivalent to that of Extended H systems with splicing rules
of radius one. First, we prove that multiple context does not add to the
power of extended H-systems. We then provide a construction of a Simple
H-system which generates the same language. This result is an interesting one
since this class by definition appears as a small subclass of EH(FIN,p[1]).
This paper has initiated work in the direction of providing forbidden con-
text for simple H-systems. We have also proved that SEH,3(f) is equal to
EH(FIN, f[1,1)).

In [8] it is conjectured that EH(FIN,p[l]) = EH(FIN, f[1]) = CF. In
[3] it has been proved that CF C EH(FIN,p[l]) and CF C EH(FIN, f[1]).
In [2] it has been proved that CF C SEH, 3(p). If the conjecture in [8] is
proved positively, then all these classes will become equal to C'F.

There are several directions worth pursuing. The role of cardinality of for-
bidden context in Extended H-Systems is an interesting open problem. The
power of simple H-systems of (1,4) and (1,3) types with forbidden context
is also an exciting area to attack and is open for research.

References

[1] G.Alford, An explicit construction of a universal extended H system,
Workshop on Molecular Computing, Mangalia,1997.

[2] V.T. Chakaravarthy and K.Krithivasan, Some results on simple extended
H-systems, Romanian Journal of Information Science and Technology,
Vol. 1, Number 3, 1998, 203-215.

[3] V.T. Chakaravarthy and K.Krithivasan, A note on Extended H systems
with permitting/ forbidden context of radius one, Bulletin of EATCS, 62,
1997, 208-213.

[4] T.Head, Formal Language theory and DNA: an analysis of the generative
capacity of specific recombinant behaviours, Bulletin of Math. Biology,
49(1987), 737-759.

21

[5] T.Head, Gh. Paun, D.Pixton , Language theory and molecular genetics ,
chapter 7 in vol.2 of [9], 295-360.

[6] A.Mateescu, Gh.Paun, G.Rozenberg, A.Salomaa, Simple splicing system-
s, Discrete Applied Mathematics, 1997, 84; 1998, 145-163 .

[7] Gh.Paun. Regular Extended H systems are computationally universal,
Journal on Automata, Languages and Combinatorics, 1996 , 27-36.

[8] Gh.Paun, Computing by Splicing. How simple rules?. Bulletin of the
EATCS, 60, 1996 , 145-150.

[9] G.Rozenberg, A.Salomaa, Handbook of Formal Languages, 3 volumes,
Springer-Verlag, Heidelberg, 1997.

22

