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ontext.1 Introdu
tionTom Head [4℄ initiated a new appealing bran
h of formal language theory
alled Spli
ing Systems. The basi
 notion is that of spli
ing, a formal modelof the re
omb inant behavior of DNA sequen
es under the in
uen
e of re-stri
tion enzymes and lygases. A slight modi�
ation of this system was 
alledas H-system by Paun [5℄.By adding the notion of terminal alphabet to a H-system, we obtain anextended H-system [5, 9℄. The power of su
h a system, with the set of spli
ing1



rules forming a regular language, turns out to be very large; these systems
hara
terize the family of re
ursively enumerable languages [1, 7℄. In thispaper, we 
on
entrate on a spe
i�
 extended H-system having the radiusone.In [6℄, the notion of Simple H-systems was introdu
ed. The possibility ofpermitting 
ontexts and target alphabet for Simple H-systems was studiedin [2℄ and many interesting results were obtained. In this paper, we studySEH systems of the (2; 3) type.In this paper we prove that the power of SEH system of the (2; 3) typewith permitting 
ontexts is equivalent to Extended H-system with radiusequal to one and permitting 
ontexts. We also prove interesting results forSimple Extended H-systems with forbidden 
ontexts. This paper also de�nesa new term 
alled the 
ardinality of 
ontext in Extended H-systems. We provethat 
ardinality of 
ontext adds no power to EH systems with permitting
ontexts but plays a very important role in forbidden 
ontexts.In se
tion 2, we give the basi
 de�nitions. Se
tion 3 des
ribes the role of
ardinality of 
ontext in Extended H-systems. In se
tion 4, we prove thatSEH2;3(p) is equal to EH(FIN; p[1℄). In se
tion 5, we prove an interestingresult on SEH system of (2; 3) type with forbidden 
ontexts. In se
tion 6,we present our 
on
lusions.2 Preliminaries2.1 Extended H SystemsThe spli
ing operation is a formal model of the DNA re
ombination underthe e�e
t of restri
tion enzymes. A spli
ing rule (over an alphabet V ) is astring r = u1#u2$u3#u4 where u1; u2; u3; u4 2 V � and #; $ are two spe
ialsymbols not in V .For x; y; z; w 2 V � and r as above we write (x; y) `r w i� x = x1u1u2x2; y =y1u3u4y2; w = x1u1u4y2 for some x1; x2; y1; y2 2 V �.We say that we spli
e x; y at the sites u1u2; u3u4. These sites en
ode thepatterns re
ognized by restri
tion enzymes able to 
ut the DNA sequen
esbetween u1; u2, respe
tively between u3; u4. The radius of a spli
ing rule isthe length of the longest string u1; u2; u3; u4.An extended H system is a quadruple 
 = (V; T; A;R) where V is the2



total alphabet, T � V is the target alphabet, A � V � represents a �nite setof axioms and R � V �#V �$V �#V � is a set of spli
ing rules.For any L � V � and 
 = (V; T; A;R) we de�ne�(L) = fwj(x; y) `r w for x; y 2 L; r 2 Rg�0(L) = L�i+1(L) = �i(L) [ �(�i(L)); i � 0��(L) = [i�0�i(L)The language generated by 
 isL(
) = ��(A) \ T �An Extended H-System with permitting 
ontexts is a quadruple 
 =(V; T; A;R) where V; T; A are the same as de�ned earlier and R is a �nite setof triples p = (r = u1#u2$u3#u4; C1; C2) where C1; C2 � V and r is a usualspli
ing rule.In this 
ase (x; y) `p w i� (x; y) `r w and all symbols of C1 appear in xand all symbols of C2 o

ur in y.An Extended H-System with forbidden 
ontexts is a quadruple 
 =(V; T; A;R) where V; T; A are the same as de�ned earlier and R is a �nite setof triples p = (r = u1#u2$u3#u4; C1; C2) where C1; C2 � V and r is a usualspli
ing rule.In this 
ase (x; y) `p w i� (x; y) `r w and all symbols of C1 do not appearin x and all symbols of C2 do not o

ur in y.EH(FIN; p[k℄) refers to the family of languages generated by Extend-ed H-Systems with permitting 
ontexts, �nite set of axioms and rules withmaximum radius equal to k for k � 1. In a similar fashion, one 
an de�neEH(FIN; f [k℄) to be the family of languages generated by Extended H sys-tems with forbidden 
ontexts, �nite set of axioms and rules with maximumradius equal to k.Let us de�ne a new term 
ardinality of 
ontext to be the maximum sizeof a 
ontext in a rule in the Extended H system. An Extended H-system 
is said to have a 
ardinality of 
ontext equal to n if every rule r = (p; C1; C2)satis�es the 
onstraint jC1j � n and jC2j � n and n is the smallest integerwith this property.Let EH(FIN; p[k; n℄) de�ne the family of languages generated by Ex-tended H systems with permitting 
ontexts, �nite set of axioms and ruleswith maximum radius equal to k and maximum 
ardinality of 
ontext equal3



to n. Similarly one 
an de�ne EH(FIN; f [k; n℄) for forbidden 
ontexts.In this paper we will investigate the properties of these languages andasso
iate them with Simple H-Systems. We will prove that the 
ardinalityof 
ontext plays no role in permitting 
ontexts but has an important role inforbidden 
ontexts.2.2 Simple H SystemsA Simple H-System is a triple 
 = (V;A;M) where V is the total alphabet, Ais a �nite language over V and M � V . The elements of A are 
alled axiomsand those of M are 
alled markers. In [6℄ where Simple H-Systems were in-trodu
ed, one takes four ternary relations on the language V � , 
orrespondingto spli
ing rules of the forma#$a#;#a$#a; a#$#a;#a$a#where a is an arbitrary element of M . The rules listed above 
orrespondto spli
ing rules of type (1; 3); (2; 4); (1; 4) and (2; 3) respe
tively. Clearlyrules of types (1; 3) and (2; 4) de�ne the same operation for x; y; z 2 V � anda 2M . We obtain(x; y) `a(1;3)or(2;4) z i� x = x1ax2; y = y1ay2; z = x1ay2 for some x1; x2; y1; y2 2V �For the (1; 4) and the (2; 3) types we have(x; y) `a(1;4) z i� x = x1ax2; y = y1ay2; z = x1aay2 for some x1; x2; y1; y2 2V �(x; y) `a(2;3) z i� x = x1ax2; y = y1ay2; z = x1y2 for some x1; x2; y1; y2 2 V �Similar to Extended H-systems we de�ne for a language L � V � and (i; j) 2f(1; 3); (2; 4); (1; 4); (2; 3)g. We denote�(i;j)(L) = fzjz 2 V �; (x; y) `a(i;j) z for x; y 2 L; a 2MgDe�ne�0(i;j)(L) = L�k+1(i;j)(L) = �k(i;j)(L) [ �(i;j)(�k(i;j)(L)); k � 0��(i;j)(L) = [k�0�k(i;j)(L)The language generated by 
 with spli
ing rules of type (i; j) is de�ned asL(i;j)(
) = ��(i;j)(A)One 
an visualize an extension to Simple H-Systems with permitting 
on-texts and terminal alphabet. A Simple H-System with terminal alphabet is4



one in whi
h a set T � V is identi�ed as the target alphabet and only ele-ments of T � whi
h are present in L(
) are a

epted by the language. This is
alled Simple Extended H System(SEH System). A Simple H-System withpermitting 
ontext has rules of the form (a; b; 
) with a; b; 
 2 V . Su
h atriple represents a spli
ing rule using the marker a, whi
h is applied to twostrings x; y 2 V � only if the symbol b appears in x and 
 in y.Similar to permitting 
ontext, one 
an have forbidden 
ontext for SimpleH systems. A triple (a; b; 
) represents a spli
ing rule using the marker a,whi
h 
an be applied to two strings x; y 2 V � if and only if b does not appearin x and 
 does not appear in y.In this paper we only 
onsider rules of the (2; 3) type into 
onsideration.Formally we de�ne a Simple H-System of (2,3) type with permitting 
ontextand target alphabet as a quadruple 
 = (V; T; A;R) where V is the totalalphabet, T is the target alphabet, A is a �nite set of axioms and R is a setof spli
ing rules of the form (a; b; 
). For x; y 2 V �; r = (a; b; 
) 2 R(x; y) `r z i� x = x1ax2; y = y1ay2; z = x1y2 for some x1; x2; y1; y2 2 V �and b appears in x and 
 appears in y.All languages derivable using this mode of derivation with permitting
ontext and target alphabet belong to the SEH(2;3)(p) family. All languagesderivable using the (2; 3) mode of derivation with forbidden 
ontext andtarget alphabet belong to the SEH(2;3)(f) family.3 The Role of Context in Extended H Sys-temsIn this paper we prove that the power of SEH(2;3)(p) is the same as that ofEH(FIN; p[1℄). There are two features of Simple H-Systems whi
h makesthem by de�nition look like a very spe
ial sub
lass of Extended H System-s. One important feature is that of the stru
ture of the spli
ing rules inthe Simple H-Systems. Another important feature that makes Extended H-systems look very powerful is the presen
e of permitting 
ontexts of arbitrarysizes. In SEH systems the size of the permitting 
ontext is restri
ted to one.Formally, a rule r in a Extended H System is of the form (p;C1; C2) whereC1; C2 
an be arbitrary subsets of the alphabet V but the same rule is validin Simple H-Systems i� jC1j � 1; jC2j � 1.5



In this se
tion we show that the power of Extended H-Systems is notenhan
ed by the presen
e of permitting 
ontexts of arbitrary sizes. For anyarbitrary Extended H-System 
, we present an equivalent EH system 
0 inwhi
h ea
h rule has its permitting 
ontext redu
ed to size one. We also showthat for every language L in Extended H-system with forbidden 
ontexthaving a 
ardinality of 
ontext greater than one there is a 
orrespondingmarker language L$ in EH systems with 
ardinality of forbidden 
ontextequal to 2.A spli
ing system is said to satisfy the property � i� every rule r 2 R isof the form (p; C1; C2) where p = (u1#u2$u3#u4) is a spli
ing rule of radiusone and jC1j = 1; jC2j = 1. A spli
ing system satisfying property � has a
ardinality of 
ontext equal to 1.Theorem 1: For every spli
ing system 
 = (V; T; A;R) 2 EH(FIN; p[1℄)there exists an equivalent spli
ing system 
0 = (V 0; T; A0; R0) 2 EH(FIN; p[1℄)su
h that 
0 satis�es property � and L(
) = L(
0).Proof:Let 
 = (V; T; A;R) be a EH(FIN; p[1℄) system. An equivalent 
0, inwhi
h ea
h 
ontext is of 
ardinality one, is 
onstru
ted below. First 
onstru
tthe following sets:V
 = f

, Æ
 j C �V , C 6= ;gVj = fNa j a 2VgA
 = fÆ
1Æ
2 , Æ
2Æ
1 j C1 6= ;, C1, C2�V, C2= C1[fag for some a2VgAa = f

Æ
, Æ


 j C �V, C 6= ;gAd = f

x

 j x 2A, all elements in C appear in xgAe = fD

, 

D j C �V, C 6= ;gR
 = f ( Æ
2#Æ
1$Æ
1#, Æ
2 , a), ( # Æ
1$Æ
1#Æ
2 , a, Æ
2) j C2= C1[fag fora 2V gRa =f (Æ
 #

$

#, Æ
, Na),( #

$

# Æ
,Na , Æ
)j C �V , a2VgAf = fB

, 

B j C �VgRf = f (B#

$ 

#, B ,

0 ) , (#

$

#B , 

0 , B) j C;C 0 �V gAg = fBÆ
, Æ
B j C �Vg 6



Rg = f (Æfag#B$B#, Æfag, a), (#B$B#Æfag, a, Æfag) j a 2V gRh = f ( D#

$

#, D, 

0 ), ( # 

$

#D, 

0, D) j C;C 0 �V gAi = fD, 

M, M

gRi = f(#D$D#, M, ;), (#D$D#, ;, M), ( #

$

#, D, ;), ( # 

$

#,;, D), (#M$M#; ;; ;) j C �VgRs = f (a#Nb$N
#d , 

1, 

2 ) j there exists a rule (a#b$
#d; C1, C2)in R gNote that we are 
onsidering only the rules of the form (a#b$
#d, C1,C2). There is no loss of generality in this for, any rule in whi
h one or moreof 'a', 'b', '
', or 'd' are missing is equivalent to a set of rules in whi
h ea
hmissing position is repla
ed, su

essively, by all letters of V.Aj = f aNa, Naa j a 2V gRj = f ( #a$a#Na, Æ
, Na ), ( Na#a$a#, Na, Æ
 ) j C �V, a 2VgV' = V [fB , D , Mg [V
 [VjR' = Ra [ R
 [ Rf [ Rg [ Rh [ Ri [Rj [RsA' = Aa [A
 [Ad [Ae [Af [Ag [Ai [AjAnd 
0 = (V 0; T; A0; R0).The above spli
ing system works as follows. The rules and axioms indexed'i' and 'h' are for removing elements not belonging to V from strings of theform 

1�

2to produ
e the required strings.The whole me
hanism is 
entered around strings of the form 

1�

2.On
esu
h a string is produ
ed rules and axioms in the sets indexed from 'a' to'g' do the following. First a B is appended to one of the ends of the abovestring (sets with index 'f' do this). Then the 
ontext present in the string �,that is the set of all the distin
t letters of V present in �, will be 
apturedin a letter of the form Æ
 where C is the set mentioned above. The rules thatdo this are R
 , Ra.The string � will have letters belonging only to V as willbe 
lear from the des
ription given below. After this the string (whi
h willnow be of the form Æ
1 �

2 or 

2�Æ
1) will be made ready to take part inanother spli
ing .The rules of Rj 
ut the string at some a 2 V and so oneend of the string wil be bound by Na and on the other end the Æ
1 is repla
edby 

1. So the string will now be of the form 

1�'Na or Na�'

1. This string7




an now enter spli
ings with other strings of the same form a

ording to therules of Rs whi
h simulate the rules of R.The whole pro
ess is shown below. Suppose we start with the strings

1�

2 and 

3�

4. Then the following spli
ings will o

ur(B

1, 

1�

2) ` B�

2 (using a rule from Rf)(ÆfagB , B�

2) ` Æfag�

2 (using a rule from Rg )(Æ
Æ
0 , Æ
0 �

2) ` Æ
 �

2 (using a rule from R
 )( Æ
�0ab�

2 , bNb) ` Æ
 �0aNb ( using a rule from Rj)(

Æ
 , Æ
 �'Na )` 

�'aNb ( using a rule from Ra)Similarly 

3�

4 derives N
d�'

0These two strings will 
ombine a

ording to a rule ( a # Nb $ N
 # d , 

,

0) to produ
e 

�0� 0

0From this string �0� 0 will be produ
ed as follows.(D

 , 

�0� 0

0) ` D�0� 0

0 (using a rule from Rh)(D�0� 0

0 , 

0M ) ` D�0� 0 M (using a rule from Ri)(D ,D�0� 0 M) ` �0� 0 M (using a rule from Ri)( �0� 0 M , M) ` �0� 0 (using a rule from Ri )We now prove that 
 is equivalent to 
0.Claim 1: If 
0 produ
es a string x then it must be produ
ed by 
.Proof : For strings derived in four steps in 
0 the 
laim is true from the thefa
t that 

x

 is an axiom of 
0 if x is an axiom of 
 and only su
h strings
an be produ
ed in three steps(three is the minimum number of stepsrequired to produ
e a string from V* in 
0). Assume that the assertion istrue for strings whi
h are derived in less than k steps where k is the numberof steps taken to derive x in 
0. Now x must have been produ
ed from astring of the form 

1x

2.This in turn must have been produ
ed fromstrings of the form 

1u'aNb and N
dv'

2. These must have been produ
edfrom strings 

1u

3 and 

4v

2for some C3 and C4 as 
an be seen from theexample shown above.By indu
tion hypothesis u and v will be produ
ed in8




 (note that from the 
onstru
tion of the system u and v will be produ
edin 
0 and they will be produ
ed in less than k steps.The number of stepstaken to 
apture the 
ontext and prepare the string for spli
ing take atleast as many steps as it takes to remove the symbols 

, whi
h is four).Also sin
e the strings 

1uaNb and N
dv

2 are produ
ed from 

1u

3 and

4v

2respe
tively and the former pair of strings 
ombine a

ording to therule (a # Nb $ N
 # d ,

1,

2) where C1and C2 
apture the 
ontext in uand v respe
tively ,there must be rule (a # b $ 
 # d, C1, C2) in Ra

ording to whi
h u and v 
an 
ombine to produ
e u'v'.Hen
e the proof.Claim 2: If a string x is produ
ed in 
 then it will be produ
ed in 
0Proof: We 
an again use the same approa
h. The assertion is true forstrings derived in one step in 
 (the axioms) by the 
onstru
tion of 
0 .Suppose the assertion is true for strings whi
h are derived in less than ksteps. Let x = uadv be derived from strings of the form uab� and Æ
dv bythe rule (a # b $ 
 # ,. C, C'). By indu
tion hypothesis uab� and Æ
dvmust have been produ
ed in 
0. So by 
onstru
tion of S the strings 

uaNband N
dv

0 will also be produ
ed in 
0.And the rule (a # Nb $ N
 # d,

,

0) will be in R' .So the string 

uv

0 will be produ
ed. From thisstring uv will be produ
ed by the rules from Ri and Rh. Hen
e the proof.So from the above two 
laims it 
an be seen that the 
0 produ
es thosestrings and only those strings that are produ
ed by 
. Hen
e 
ardinality of
ontext does not a�e
t the power of the Extended H system with permiting
ontexts and rules of radius one.Therefore L(
) = L(
0):2Note that the same proof is appli
able to radius of arbitrary sizes. One 
anapply the same proof to show that EH(FIN; p[k℄) = EH(FIN; p[k; 1℄). This
learly indi
ate that the 
ardinality of 
ontext adds no power to ExtendedH-systems with permitting 
ontext.Theorem 2: For every language L 2 EH(FIN; f [k℄) there exists alanguage L0 2 EH(FIN; f [k; 2℄) su
h that L0 = L$ for a 
hara
ter $ notpresent in the alphabet of L.Proof: Consider a spli
ing system 
 = (V; T; A;R) in EH(FIN,f[k℄) forsome n. For every rule r 2 R we introdu
e two new symbols �r; �r0. Let9



R = fr1; r2; : : : rng.Let Y = �r1�r2 : : : �rn and let Yri = �r1�r2 : : : �ri�1�ri+1 : : : �rn .Let Y 0 = �r01�r02 : : : �r0n and let Y 0ri = �r01�r02 : : : �r0i�1�r0i+1 : : : �r0n.Let V0 = V [fpg for some p =2 V . Transform every rule r = (q; C;D) 2 Rwhere C = � or D = � to rules of the form r = (q; C 0; D0) where C 0 = fpg ifC = � else it is equal to C and D0 = fpg if D = � else it is equal to D.This transformation has no e�e
t on L(
) sin
e we have introdu
ed aforbidden 
ontext on a 
hara
ter not present in V . The proof presentedbelow requires that every rule has non-empty forbidden 
ontext. The abovetransformation does not in
rease the 
ardinality of 
ontext of 
.Constru
t 
0 = (V 0; T 0; A0; R0) 2 EH(FIN; f [k; 2℄) as follows:T 0 = T [ f$gV
 = f
CjC 6= �; C � V0gVr = f�r; �r0jr 2 RgV 0 = V0 [ V
 [ Vr [ fZ;X;X 0; Z 0; Z 00; X 00;$gAs = fY 0ZwXY; Y 0XwZY jw 2 Ag[fZZ 00; Z 00$;Z 0Y ;Z 0ZY ;Y 0ZX 0;Y 0X 0;X 00gA
 = f
X
WY; Y 0
W
X jX;W � V;X 6= �;W = X [ fag for some a 2 V gAe = f
CYri; Y 0ri
Djri = (p; C;D) 2 RgAd = fZ
CY; Y 0
CZjjCj = 1; C � V0gA0 = As [ A
 [ Ad [ AeR
 = f(#
X$
X#; a; Z); (#
X$
X#; Z; a)jX � V � faggRd = f(Z#$Z#
C ; a;X); (
C#Z$#Z;X; a)ja 2 V; C = faggRr = f(p; f�ri;$g; f�r 0i ;$g)jri = (p;C ;D) 2 RgRe = f(Z#
C$
C#; �; f�r; Xg); (#
D$
D#Z; f�r0; Xg; �)jr = (p; C;D) 2RgRf = f(#X$#Z 0; �r0; �r0); (X 0#$X#; �r; �r)jr 2 RgRp = f(#Z$Z#Z 00; �; �); (#Z 00$Z 00#$; fX ;Zg; �); (X#$#X 00; f$;Zg; �)gRg = f(#Z 0$Z 0#Z; fZ;X 0g; X); (Z#X 0$X 0#; X; fZ;Z 0g)jr 2 RgR0 = R
 [Rd [ Re [Rf [ Rr [ Rp [RgThe 
ardinality of 
ontext of 
0 is 2 and the radius of 
0 is equal to the ra-dius of 
. Therefore one 
an 
learly see that 
0 belongs to EH(FIN; f [k; 2℄).We will now prove that the language generated by 
0 is in fa
t equal to thelanguage generated by 
 appended with a 
onstant letter $.A string x is said to satisfy the forbidden 
ontext C � V0 if all the
hara
ters of C are not present in x. 10



The spli
ing system 
0 satis�es the following property:Any string w 2 V � derivable in any intermediary step of 
0 and of the formY 0XyZ
CY or Y 0
CZyXY is su
h that y is an intermediary string derivablein 
 and y satis�es the forbidden 
ontext C.The rules in Rr are used to simulate the rules R of 
. The rules in R
; Rdare used to generate all the possible forbidden 
ontexts for a single stringx 2 V �. Every string x is initially appended with the strings ZY and XY 0 inorder to generate all the possible 
ontexts for the string. For a given stringY 0XxZY , 
0 produ
es all strings of the form Y 0XxZ
CY where x satis�esthe forbidden 
ontext C. Similarly, for a given string Y 0ZxXY , 
0 produ
esall strings of the form Y 0
CZxXY where x satis�es the forbidden 
ontext C.Suppose C � V and x satis�es the forbidden 
ontext C, then we produ
ethe string Y 0XxZ
CY from Y 0XxZY as follows:Assume Y 0XxZY is derivable in 
0(Y 0XxZY; Z
aiY ) ` Y 0XxZ
aiY for some ai 2 C using the 
orrespondingrule in Rd.Let us prove by indu
tion on the size of the 
ontext C that Y 0XxZ
CY isderivable.Let C 0 be a subset of C su
h that C 0 = C � fajg for some jBy indu
tion hypothesis Y 0XxZ
C0Y is derivable.(Y 0XxZ
C0Y; 
C0
CY ) ` Y 0XxZ
CY using the 
orresponding rule in R
Therefore Y 0XxZ
CY is derivable i� x satis�es the forbidden 
ontext C.Similarly we 
an show that Y 0
CZxXY is also derivable in 
0.So for every string Y 0XwZY in 
0 all strings of the Y 0XwZ
CY andY 0
CZwXY are derivable i� w satis�es the forbidden 
ontext C.
0 satis�es another important property:Every string u 2 V 0� derivable in 
0 and whi
h does not 
ontain the 
hara
ter�r for some r = (p; C;D) 2 R satis�es the forbidden 
ontext C and everystring that does not 
ontain the 
hara
ter �r0 satis�es the forbidden 
ontextD. Note that the only strings w$ 2 V �$ derivable in 
0 are derivable onlyfrom Y 0XwZY . For every w 2 V � derivable in 
, Y 0XwZY; Y 0ZwXY arederivable in 
0.We will show the above result using indu
tion on the number of spli
ingsteps required to produ
e a string w 2 V � in 
.Sin
e fY 0XxZY; Y 0ZxXY jx 2 Ag � A0, the basis step of indu
tion is11



true.Assume that for all strings x derivable in at most k spli
ing steps in 
,Y 0XxZY; Y 0ZxXY are derivable in 
0. Let w 2 V � be derivable in 
 ink + 1 steps. Let w be derived from strings u; v 2 V � using rule ri 2 R.By indu
tion hypothesis Y 0XuZY; Y 0ZvXY are derivable in 
0. Let ri =(p; C1; C2) 2 R . Sin
e (u; v) `ri w, u satis�es the forbidden 
ontext C1and v satis�es the forbidden 
ontext C2. Therefore the strings Y 0XuZ
C1Yand Y 0
C2ZvXY are also derivable. Using rules of Re we 
an also deriveY 0riZvXY and Y 0XuZYri. Using these strings and the rules of Rf one 
anderive Y 0riZvXY; Y 0riZvZ 0Y; Y 0XuZYri and Y 0X 0uZYri.Using the rules of R0 one 
an derive Y 0XwZY; Y 0ZwXY in the followingway:Using the rule (p; f�ri;$g; f� 0ri ;$g) in Rr the strings Y 0XuZYri; Y 0X 0uZYri
an spli
e with the strings Y 0riZvXY; Y 0riZvZ 0Y to produ
e the strings Y 0XwXY;Y 0XwZ 0Y; Y 0X 0wXY and Y 0X 0wZ 0Y . Among the four strings produ
ed thestrings Y 0XwXY and Y 0X 0wZ 0Y are rendered ina
tive sin
e they 
annotspli
e anymore. Using the rules of Rg the string Y 0XwZY and Y 0ZwXY arederivable from the strings Y 0XwZ 0Y and Y 0X 0wXY respe
tively.Therefore one 
an obtain Y 0XwZY and Y 0ZwXY in 
0. From Y 0XwZYwe obtain w$ using the spli
ing rules listed below.(Y 0XwZY; ZZ 00) ` Y 0XwZ 00 using rule (#Z$Z#Z 00; �; �)(Y 0XwZ 00; X 00) ` wZ 00 using rule (X#$#X 00; fZ;$g; �)(wZ 00; Z 00$) ` w$ using rule (#Z 00$Z 00#$; fX ;Zg; �)From this we 
an note that for every string w derivable in 
, w$ isderivable in 
0.Now we will prove that for every string w$ 2 V �$ derivable in 
0, w ispre
isely derivable in 
. In 
0 the strings w$ 2 V �$ are derivable only fromstrings of the form Y 0XwZY .Let us prove the above step using indu
tion on the number of spli
ingsteps required to produ
e a string w$ in 
0. If Y 0XwZY 2 A0 then w 2 Aand w$ is derivable in 
0. Therefore the basis step of indu
tion is true.A string of the form Y 0XwZY 
an be derived in 
0 only from a string ofthe form Y 0XwZ 0Y whi
h in turn 
an be produ
ed only from two stringsof the form Y 0XuZYr; YrZvXY for some r = (p; C;D) 2 R. The stringsY 0XuZYr; Y 0rZvXY are derivable only from Y 0XuZ
CY and Y 0
DZvXY .From this one 
an infer that the strings Y 0XuZY and Y 0XvZY are derivable12



in 
0 and that u; v satisfy the forbidden 
ontext C;D respe
tively.By indu
tion hypothesis we get that u; v are derivable in 
. In 
 one 
anhave the following spli
ing a
tion:(u; v) `r wTherefore w is derivable in 
.By indu
tion one 
an 
on
lude that for every w$ 2 V �$ derivable in 
0,w is pre
isely derivable in 
.Therefore L(
0) = L(
)$.From the above two theorems one 
an infer that the 
ardinality of permit-ting 
ontext does not add power to Extended H-Systems but the 
ardinalityof forbidden 
ontext seems to play an important role in Extended H-Systems.4 Equivalen
e of SEH2;3(p) and EH(FIN; p[1℄)In the previous se
tion, we proved that the power of Extended H-Systems isnot enhan
ed by the presen
e of permitting 
ontexts of arbitrary sizes. Inthis se
tion we derive the equivalen
e of SEH2;3(p) with Extended H-Systemswith 
ardinality of 
ontext restri
ted to one. For any arbitrary Extended H-System 
 in whi
h ea
h rule has its permitting 
ontext redu
ed to size one,we present an equivalent SEH system 
0 with rules of type (2; 3) havingpermitting 
ontext and terminal alphabet.4.1 NotationsLet 
 = (V; T; A;R) be an extended H system of radius 1 with permitting
ontext having a 
ardinality of 
ontext equal to 1. We introdu
e new symbolsof the form Xa;b for all a; b 2 V [ f�g with the ex
eption of X�;�.Let Ve = fXa;bja; b 2 V [ f�gg � fX�;�gV0 = V [ VeA string w 2 V �0 is said to be valid i�1. Two symbols of Ve do not o

ur adja
ent to ea
h other.2. if Xa;b is present in w then the left adja
ent symbol of Xa;b has to be aand b its right adja
ent symbol.13



3. The �rst 
hara
ter 
 of w must be either an element of V or should beof the form X�;a for some a 2 V .4. The last 
hara
ter d of w must be either an element of V or should beof the form Xa;� for some a 2 V .The boolean fun
tion valid assumes the value true for a string w if it isvalid, else it takes the value false.De�ne a fun
tion g : V �0 ! V �. For every u 2 V �0 , g(u) is obtained bysubstituting � for all 
hara
ters of Ve present in u. From the de�nition one
an infer that g(w) = w i� w 2 V �.De�ne a fun
tion f : V � ! P (V �0 ). The fun
tion f is de�ned as the validpreimage of a word w 2 V � under the fun
tion g. Note that P (X) denotesthe power set of the set X.Mathemati
ally, we obtainf(w) = fuju 2 V �0 ; valid(u); g(u) = wgThe fun
tion f 
an be extended to all languages L � V �:f(L) = [w2Lf(w)It is not diÆ
ult to see thatLemma 1: For every �nite language L, f(L) is �nite.A spli
ing system is said to satisfy property � if and only if the following
onditions are satis�ed:For every rule r = (a#b$
#d; C1; C2) where some of the alphabets a; b; 
; dare �, there exists rules of the form (e#f$g#h; C1; C2) su
h that the symbols
orresponding to the �� alphabets in rule r assume all possible 
hara
ters inV [ f�g.It is straightforward to note thatLemma 2: Given a spli
ing system 
 = (V; T; A;R) one 
an transform 
 to
0 = (V; T; A;R0) su
h that 
0 satis�es property � and L(
) = L(
0).Theorem 3: SEH2;3(p) = EH(FIN; p[1℄).Proof: Consider an extended H-system 
 = (V; T; A;R) that satis�esproperties � and �. We will form a simple H system 
0 of the (2; 3) typewith permitting 
ontext and target alphabet whi
h generates L(
).14



Let Ve; V0; f and g be as de�ned earlier. 
0 = (V 0; T; A0; R0) where :V 0 = V0 [ f
rjr 2 Rg [ fMgA0 = f(A)[fMXa;b
rM 0;M 0
rXa;dX
;dM;M 0
rX
;dM jr = (a#b$
#d; C1; C2) 2RgR0 = f(Xa;b; C1; f
rg); (X
;d; f
rg; C2); (
r; fag; fdg)jr = (a#b$
#d; C1; C2) 2Rg Sin
e A is a �nite language over V we 
an dire
tly infer that f(A) is also�nite.A string w 2 V � is said to be 
� derivable, if w 
an be derived fromthe set of rules and axioms in a sequen
e of spli
ing steps. Note that w 
anbe any intermediary string derived in 
 and need not be present in T �. Weextend the same de�nition to 
0 over the set V0.We will show that for every w that is 
� derivable, all strings of f(w)are derivable in 
0. We will also show that for every string v 2 V �0 derivablein 
0, g(v) is derivable in 
. We will prove this assertion using indu
tion.The indu
tion will be on the number of spli
ing steps required to produ
ea string w 2 V �. Sin
e f(A) � A0, for all strings w 2 V � whi
h are 
�derivable in zero steps, f(w) is 
0 derivable.Assume that for all strings w 2 V � whi
h are 
�derivable in atmost ksteps, f(w) is 
0� derivable. Consider a string w 2 V � whi
h is derived ink + 1 spli
ing steps. Let r 2 R be the �nal rule applied to obtain w fromstrings u; v.If r = (a#b$
#d; C1; C2) then u = u1abu2; v = v1
dv2 and w = u1adv2for some strings u1; u2; v1; v2 2 V �.Let P (w) denote those sets of strings in f(w) whi
h do not end in asymbol of the form Xa;� and Q(w) denote those set of strings in f(w) thatdo not start with a symbol of the form X�;b for some a; b 2 V .By indu
tion hypothesis sin
e u; v are 
� derivable in atmost k spli
ingsteps in 
, all strings in f(u) and f(v) are 
0�derivable.If s = s1abs2 2 V � then :f(s) = fw1w2; w1Xa;bw2jw1 2 P (s1a); w2 2 Q(bs2); a; b 2 V gTherefore any string of f(w) is of the form w1w2 or w1Xa;dw2 wherew1 2 P (u1a) and w2 2 Q(dv2). Consider an arbitrary w1 2 P (u1a) andan arbitrary w2 2 Q(dv2). We will show that both w1w2 and w1Xa;dw2are derivable in 
0 for this arbitrary 
hoi
e of w1 and w2. Sin
e f(u) and15



f(v) are 
0�derivable there exists two strings u0 2 f(u); v0 2 f(v) su
h thatu0 = w1Xa;bu02 and v0 = v01X
;dw2 for some u02 2 Q(bu2) and v01 2 P (
v1).Now w is derived in 
 from u; v using rule r 2 R.To derive w1w2 and w1Xa;dw2 in 
0 we spli
e in the following way:(w1Xa;bu02;MXa;b
rM 0) ` w1
rM 0 using (Xa;b; C1; f
rg)(M 0
rXa;dX
;dM; v01X
;dw2) `M 0
rXa;dw2 using (X
;d; f
rM 0g; C2)(M 0
rX
;dM; v01X
;dw2) `M 0
rw2 using (X
;d; f
rM 0g; C2)(w1
rM 0;M 0
rXa;dw2) ` w1Xa;dw2 using (
r; fag; fdg)(w1
rM 0;M 0
rw2) ` w1w2 using (
r; fag; fdg)Therefore w1w2 and w1Xa;dw2 are 
0�derivable for every w1 2 P (u1a); w2 2Q(bv2). Therefore f(w) is 
0� derivable for every w that is 
� derivable.The spli
ing system 
0 satis�es the following property:Every string w = w1w2 2 V �0 is derived from two strings of the form w1
rand 
rw2 where w1; w2 2 V �0 .We will prove by indu
tion that for every w 2 V �0 that is derivable in 
0,g(w) is 
� derivable. We again apply indu
tion on the number of spli
ingsteps needed to derive w.Note that A0 \ V �0 = f(A) and g(f(A)) = A. Thereby for all stringsw 2 V �0 whi
h are derivable in zero steps, g(w) is 
 derivable.Assume that for all strings w 2 V �0 whi
h are 
0�derivable in atmost ksteps, g(w) is 
� derivable. Consider a string w 2 V �0 derived in k+1 steps.w = w1w2 or w1Xa;dw2 derived from strings of the form u1 = w1
r; u2 =
rw2; u3 = 
rXa;dw2 where w1; w2 2 V �0 and r = (a#b$
#d; C1; C2) 2 R.Note that u1; u2; u3 are derived from v1; v2 where v1 = w1Xa;bv01 and v2 =v02X
;dw2 for v01; v02 2 V �0 .(w1Xa;bv01;MXa;b
r) ` w1
r(
rX
;dM; v02X
;dw2) ` 
rw2(
rXa;dX
;dM; v02X
;dw2) ` 
rXa;dw2v1 and v2 are 
0�derivable in atmost k steps. By indu
tion hypothesiswe get that g(v1) and g(v2) are 
�derivable.Let g(v1) = s1 and g(v2) = s2.s1 = g(w1)g(v01); s2 = g(v02)g(w2)Sin
e v1 is a valid string, w1 must end with a and v01 must start with b.Therefore the site ab is present in g(v1). Similarly the site 
d must be presentin g(v2). 16



Sin
e w1
r is derivable from v1, v1 satis�es the permitting 
ontext C1.Similarly we 
an prove that v2 satis�es 
ontext C2. Sin
e C1; C2 � V wehave that g(v1); g(v2) satisfy 
ontexts C1; C2 respe
tively.s1 = x1abx2; s2 = y1
dy2r = (a#b$
#d; C1; C2) and s1 satis�es C1 ands2 satis�es C2(s1; s2) `r s where s = x1ady2Sin
e s1; s2 are 
� derivable s is 
� derivable. w = w1w2 or w1Xa;dw2 )g(w) = g(w1)g(w2) = sTherefore g(w) is 
�derivable.By indu
tion we thereby infer that for all w 2 V �0 whi
h is 
�0 derivableg(w) is 
�derivable.We have shown that for every w that is 
�derivable, f(w) is 
�0 deriv-able. Sin
e f(w)\V � = fwg , wis
0� derivable. (1) Similarly for every w 2V �0 that is 
0�derivable, g(w) is 
�derivable. For every w 2 V �g(w) = w.(2)From (1) we infer that all the strings that are derived in 
 are derivablein 
0. From (2) we infer that the only strings of V � that are derivable in 
0are pre
isely the strings that are derivable in 
.Therefore one 
an infer that the set of terminal strings derived by boththese languages are the same.Therefore L(
) = L(
0).The power of EH(FIN; p[1℄) is not redu
ed by adding properties � and� to the spli
ing system. This 
an be seen from the lemmas proved before.For any arbitrary 
 2 EH(FIN; p[1℄) we 
an generate a language 
0 2SEH2;3(p) su
h that the languages generated are the same.Therefore EH(FIN; p[1℄) � SEH2;3(p).By de�nition all spli
ing systems 
 2 SEH2;3(p) belong toEH(FIN; p[1℄).SEH2;3(p) � EH(FIN; p[1℄).Hen
e it follows that EH(FIN; p[1℄) = SEH2;3(p).
17



5 Simple Extended H-Systems of (2,3) Typewith Forbidden ContextsIn this se
tion we prove an interesting result on Simple Extended H-Systemsof the (2,3) type with forbidden 
ontext and terminal alphabet. As de�nedearlier, we will refer to the languages in this 
lass as SEH2;3(f). We willshow that the two 
lasses of languages SEH2;3(f) and EH(FIN; f [1; 1℄) areequal.5.1 NotationsWe introdu
e two new symbols of the form Xa;b; X 0a;b for all a; b 2 V [ f�gwith the ex
eption of X�;�; X 0�;�.Let Ve = fXa;b; X 0a;bja; b 2 V [ f�gg � fX�;�; X 0�;�gV0 = V [ VeA string w 2 V �0 is said to be valid i�1. Two symbols of Ve do not o

ur adja
ent to ea
h other.2. If Xa;b or X 0a; b is present in w then the site where Xa;b or X 0a;b o

ursin w should be of the form aXa;bX 0a;bb.3. The leftmost substring 
 of w must either begin with an element of Vor should be of the form X�;aX 0�;aa for some a 2 V .4. The rightmost substring d of w must be either an element of V orshould be of the form aXa;�X 0a;� for some a 2 V .The boolean fun
tion valid assumes the value true for a string w if it isvalid, else it takes the value false.We de�ne two fun
tions f; g in a similar fashion to the one de�ned in theearlier se
tion.Lemma 3: For every �nite language L, f(L) is �nite.Proof: The proof is similar to the proof for Lemma 1.Lemma 4: Every spli
ing system 
 2 EH(FIN; f [1; 1℄) 
an be trans-formed to an equivalent spli
ing system 
0 2 EH(FIN; f [1; 1℄) satisfyingproperty �. 18



Proof: Let 
 = (V; T; A;R) 2 EH(FIN; f [1; 1℄). Constru
t a spli
ingsystem 
0 = (V 0; T; A;R0) as follows:Let p be an alphabet not in V . V 0 = V [ fpgLet  : V [ f�g ! V 0 su
h that  (v) = v if v 2 V and  (�) = p.R0 = f(q;  (C);  (D)jr = (q; C;D) 2 RgClearly 
0 satis�es property � and the presen
e of the alphabet p in theforbidden 
ontext of a rule does not 
hange the set of derivable strings in thespli
ing system 
0.Note that Lemma 2 is independent of the type of 
ontext i.e forbiddenor permitting. Therefore for a given spli
ing system in EH(FIN; f [1; 1℄)one 
an 
onstru
t an equivalent spli
ing system in the same 
lass satisfyingproperties � and �.Theorem 4: SEH2;3(f) = EH(FIN; f [1; 1℄).Proof: Consider a spli
ing system 
 = (V; T; A;R) in the extended Hsystem that satis�es properties � and �. We will form a simple H system 
0with forbidden 
ontext and target alphabet whi
h generates L(
).Let Ve = fXa;b; X 0a;bja; b 2 V [ f�gg � fX�;�; X 0�;�gEnumerate the rules of the set R as r1; r2; : : : rn. Introdu
e n new symbols�1; �2; : : : �n 
orresponding to ea
h rule in R. Let Vr = f�1; �2; : : : �ng and letY denote the string �1�2 : : : �n. Let Yri denote the string �1 : : : �ri�1�ri+1 : : : �rn.V 0r = f� 0r; 
rjr 2 RgV0 = V [ VeLet f; g be the same fun
tions as de�ned before.
0 = (V 0; T; A0; R0) where :V 0 = V0 [ Vr [ V 0r [ fMgAa = fM�rXa;b� 0rYr; Yr� 0rX 0
;d�rM;Yr� 0rXa;dX 0a;dX 0
;d�rMjr = (a#b$
#d; C1; C2) 2 R; a 6= 
gAb = f�rMXa;bXa;d� 0r; � 0rX 0a;dX 0a;dM�r;MXa;b
r; 
rX 0a;dMjr = (a#b$a#d; C1; C2) 2 RgA0 = f(A) [ Aa [ AbRa = f(Xa;b; C1; X 0a;b); (X 0
;d; X
;d; C2); (� 0r; �r; �r)jr = (a#b$
#d; C1; C2) 2 R and a 6= 
gRb = f(Xa;b; C1; X 0a;b); (X 0a;d; Xa;d; C2); (� 0r; �r; �r); (
r;M;M)jr = (a#b$a#d; C1; C2) 2 Rg 19



R0 = Ra [RbSin
e A is a �nite language over V we 
an dire
tly infer that f(A) is also�nite.Now we will show how 
0 simulates a parti
ular rule r 2 R of 
. Letr = (a#b$
#d; e; f) and let two strings u; v spli
e using rule r and produ
ew. We 
an infer that u = x1abx2 and satis�es the forbidden 
ontext e andv = y1
dy2 and satis�es the forbidden 
ontext f .Sin
e u; v are derivable in 
 and by indu
tion on the number of spli
ingsteps required to produ
e a string in 
, we have that f(u) and f(v) to bederivable in 
0.Consider two strings u0 2 f(u) and v0 2 f(v) su
h that u0 = z1aXa;bX 0a;bbz2and v0 = w1
X
;dX 0
;ddw2.Case 1: (a 6= 
)(u0;M�rXa;b� 0rYr) ` z1a� 0rYr using the rule (Xa;b; e; X 0a;b)(Yr� 0rX 0
;d�rM; v0) ` Yr� 0rdw2 using the rule (X 0
;d; X
;d; f)(Yr� 0rXa;dX 0a;dX 0
;d�rM; v0) ` YrXa;dX 0a;d� 0rdw2 using the rule (X 0
;d; X
;d; f)(z1a� 0rYr; Yr� 0rdw2) ` z1adw2 using the rule (� 0r; �r; �r)(z1a� 0rYr; YrXa;dX 0a;d� 0rdw2) ` z1aXa;dX 0a;ddw2 using the rule (� 0r; �r; �r)Case 2: a = 
(u0; �rMXa;bXa;d� 0r) ` z1aXa;d� 0r using the rule (Xa;b; e; X 0a;b)(u0;MXa;b
r) ` z1a
r using the rule (Xa;b; e; X 0a;b)(� 0rX 0a;dX 0a;dM�r; v0) ` � 0rX 0a;ddw2 using the rule (X 0
;d; X
;d; f)(
rX 0a;dM; v0) ` 
rdw2 using the rule (X 0
;d; X
;d; f)(z1aXa;d� 0r; � 0rX 0a;ddw2) ` z1aXa;dX 0a;ddw2 using the rule (� 0r; �r; �r)(z1a
r; 
rdw2) ` z1adw2 using the rule (
r;M;M)In both 
ases we 
an produ
e the strings z1adw2 and z1aXa;dX 0a;ddw2whi
h belong to f(w).In a similar fashion all the elements of f(w) 
an be obtained by 
hoosingthe 
orresponding elements u0; v0 from f(u); f(v).Therefore w is the only element of V � obtainable in 
0 using the simulationof the rule r 2 R, sin
e w 2 f(w) and f(w) \ V � = fwg.The rest of the proof is very similar to the proof method for Theorem 3.20



6 Con
lusionIn this paper we have proved that the power of simple H systems of the(2; 3) type is equivalent to that of Extended H systems with spli
ing rulesof radius one. First, we prove that multiple 
ontext does not add to thepower of extended H-systems. We then provide a 
onstru
tion of a SimpleH-system whi
h generates the same language. This result is an interesting onesin
e this 
lass by de�nition appears as a small sub
lass of EH(FIN; p[1℄).This paper has initiated work in the dire
tion of providing forbidden 
on-text for simple H-systems. We have also proved that SEH2;3(f) is equal toEH(FIN; f [1; 1℄).In [8℄ it is 
onje
tured that EH(FIN; p[1℄) = EH(FIN; f [1℄) = CF . In[3℄ it has been proved that CF � EH(FIN; p[1℄) and CF � EH(FIN; f [1℄).In [2℄ it has been proved that CF � SEH2;3(p). If the 
onje
ture in [8℄ isproved positively, then all these 
lasses will be
ome equal to CF .There are several dire
tions worth pursuing. The role of 
ardinality of for-bidden 
ontext in Extended H-Systems is an interesting open problem. Thepower of simple H-systems of (1; 4) and (1; 3) types with forbidden 
ontextis also an ex
iting area to atta
k and is open for resear
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